Giải phương trình: \cot x - \tan x + 4\sin 2x = \dfrac{2}{\sin 2x}
Giải
Điều kiện: \sin 2x \ne 0
Phương trình trở thành:
\dfrac{\cos x}{\sin x}-\dfrac{\sin x}{\cos x}+4\sin 2x-\dfrac{2}{\sin 2x}=0 \\ \Leftrightarrow \dfrac{2\cos 2x}{2\sin x\cos x}+4\sin 2x-\dfrac{2}{\sin 2x}=0 \\ \Leftrightarrow \cos 2x+2\sin^2 2x -1 = 0 \\ \Leftrightarrow \cos 4x -\cos 2x=0 \\ \Leftrightarrow \sin 3x.\sin x=0 \\ \Leftrightarrow \sin 3x = 0 \\ \Leftrightarrow x = \dfrac{k\pi}{3}
Kết hợp với điều kiện, nghiệm của phương trình x= \pm \dfrac{\pi}{3}+k\pi
Không có nhận xét nào :
Đăng nhận xét
Chào bạn, nếu có thắc mắc, khen - chê xin để lại bình luận. Mỗi nhận xét của bạn đều rất quan trọng. Rất vui khi bạn viết bằng tiếng Việt có dấu.