Giải hệ phương trình:
\begin{cases}4x^2= \left ( \sqrt{x^2+1}+1\right )(x^2-y^3+3y-2) \,\,(1)\\ \left ( x^2+y^2\right ) ^2 +2015y^2+2016=x^2+4032y \,\,(2)\end{cases}
Hướng dẫn
(2)\Leftrightarrow 2016y^2-4032y+2016-\dfrac{1}{4}=-\left ( x^2+y^2\right )^2 +(x^2+y^2)-\dfrac{1}{4}
\Leftrightarrow 2016(y-1)^2 -\dfrac{1}{4}=-\left ( x^2+y^2 -\dfrac{1}{2}\right )^2 \leq 0
Suy ra: 2016(y-1)^2 \leq \dfrac{1}{4}\Leftrightarrow 1-\dfrac{\sqrt{14}}{336} \leq y \leq 1+\dfrac{\sqrt{14}}{336} nên y > 0
Ta lại có (2)\Leftrightarrow 2016(y-1)^2=\left ( x^2+y^2\right )(1 -x^2-y^2) \geq 0
nên 1 -x^2-y^2 \geq 0 \Leftrightarrow x^2 + y^2 \leq 1 suy ra x^2 \leq 1
\left( \sqrt{x^2+1}+1\right)(x^2-y^3+3y-2) \\ =\left( \sqrt{x^2+1}+1\right)\left[ x^2-(y-1)^2 (y+2)\right] \\ \leq \left( \sqrt{2}+1\right)x^2 \leq 4x^2
(1)\Leftrightarrow \begin{cases} x=0 \\ y=1 \end{cases}
Thử lại, ta kết luận hệ có nghiệm (0;1)
Đăng ký:
Đăng Nhận xét
(
Atom
)
tại sao lại suy ra được dòng cuối trước khi kết luận?
Trả lờiXóaDo 0 \le x^2 \le 1 nên 2 \le \sqrt{x^2+1}+1 \le \sqrt{2} +1
Xóado y>0 nên -(y-1)^2(y+2) \le 0 \Rightarrow x^2-(y-1)^2(y+2) \le x^2
vậy (\sqrt{x^2+1}+1)[x^2-(y-1)^2(y+2)] \le (\sqrt{2} +1)x^2
(với x^2-(y-1)^2(y+2) dương hay không dương)
mà \sqrt{2}+1 < 4 nên (\sqrt{2}+1)x^2 \le 4x^2