Processing math: 100%

3 tháng 11, 2014

log_2(4x^2-4x+9)+log_2 x. log_2 (4x) -2 =0

Giải phương trình log_2(4x^2-4x+9)+log_2 x. log_2 (4x) -2 =0


Điều kiện : x > 0

pt \Leftrightarrow log_{2}\left(x^2 - x + \frac{9}{4} \right) + log_{2}\left(x \right).\left(log_{2}4 + log_{2}x \right) = 0

\Leftrightarrow log_{2}\left(x^2 - x + \dfrac{9}{4} \right) + log_{2}x\left(log_{2}x + 2 \right) = 0

\Leftrightarrow log_{2}\left[\dfrac{1}{2}\left(x^2 - x + \dfrac{9}{4} \right) \right] + \left(log_{2}x + 1\right)^{2} = 0

Mà   \dfrac{1}{2}\left(x^2 - x + \dfrac{9}{4} \right) = \dfrac{1}{2}\left(x - \dfrac{1}{2} \right)^{2} + 1 \geq 1 \Rightarrow log_{2}\left[\dfrac{1}{2}\left(x^2 - x + \dfrac{9}{4} \right) \right] \geq 0

Do đó:  log_{2}\left[\dfrac{1}{2}\left(x^2 - x + \dfrac{9}{4} \right) \right] + \left(log_{2}x + 1\right)^{2} \geq 0

Đẳng thức xảy ra khi và chỉ khi x = \dfrac{1}{2}

Không có nhận xét nào :

Đăng nhận xét

Chào bạn, nếu có thắc mắc, khen - chê xin để lại bình luận. Mỗi nhận xét của bạn đều rất quan trọng. Rất vui khi bạn viết bằng tiếng Việt có dấu.