Cho đồ thị hàm số (C): y=x^3+6x^2+9x+1; gọi A, B là 2 điểm thuộc (C) sao cho tiếp tuyến của (C) tại A và B song song với nhau đồng thời khoảng cách từ điểm M(0;1) đến đường thẳng AB bằng \dfrac{16}{\sqrt{34}}. Viết phương trình đường thẳng AB.
Hướng dẫn
Ta có: y' = 3x^2+12x+9
Gọi k là hệ số góc của tiếp tuyến tại A và B.
f'(x)=k \Leftrightarrow 3x^2+12x+9=k \Leftrightarrow 3x^2+12x+9-k=0
Để có 2 tiếp tuyến song song thì \Delta > 0 \Leftrightarrow k > -3
Ta có y=x^3+6x^2+9x+1 \Leftrightarrow 3y= (3x^2+12x+9)(x+2)-6x-15
Do A, B nằm trên (C) nên:
\begin{cases} 3y_1= k(x_1+2)-6x_1-15 \\ 3y_2= k(x_2+2)-6x_2-15 \end{cases} \Leftrightarrow \begin{cases} (k-6)x_1 -3y_1 +2k-15=0 \\ (k-6)x_2 -3y_2 +2k-15=0 \end{cases}
Suy ra phương trình đường thẳng (AB): (k-6)x-3y+2k-15=0
Theo giả thiết: d[M,(AB)]= \dfrac{16}{\sqrt{34}} \\ \Leftrightarrow \dfrac{|2k-18|}{\sqrt{(k-6)^2+9}}= \dfrac{16}{\sqrt{34}} \\ \Leftrightarrow \left[ \begin{matrix} k=1 \\ k=\dfrac{21}{5} \end{matrix} \right.
Vậy phương trình đường thẳng (AB) là: \left[ \begin{matrix} y=-\dfrac{5}{3}x-\dfrac{13}{3} \\ y=-\dfrac{3}{5}x-\dfrac{11}{5} \end{matrix} \right.
Không có nhận xét nào :
Đăng nhận xét
Chào bạn, nếu có thắc mắc, khen - chê xin để lại bình luận. Mỗi nhận xét của bạn đều rất quan trọng. Rất vui khi bạn viết bằng tiếng Việt có dấu.