Tính tích phân I = \displaystyle \int_{0}^{\sqrt{3}} \dfrac{x^3}{\sqrt{x^2+1}+x} dx
Giải
I = \displaystyle \int_{0}^{\sqrt{3}} \dfrac{x^3(\sqrt{x^2+1}-x)}{(x^2+1)-x^2} dx \\ =\displaystyle \int_{0}^{\sqrt{3}} x^3\sqrt{x^2+1} dx-\displaystyle \int_{0}^{\sqrt{3}} x^4 dx=I_1-I_2
Tính I_1=\displaystyle \int_{0}^{\sqrt{3}} x^2.x\sqrt{x^2+1} dx
Đặt t=\sqrt{x^2+1} \Rightarrow t.dt=x.dx
x=0 \Rightarrow t=1 0 , \,\, x=\sqrt{3} \Rightarrow t=2
I_1=\displaystyle \int_{1}^{2} (t^4-t^2)dt=... mà I_2=\displaystyle \int_{0}^{\sqrt{3}} x^4 dx=... nên I=...
Không có nhận xét nào :
Đăng nhận xét
Chào bạn, nếu có thắc mắc, khen - chê xin để lại bình luận. Mỗi nhận xét của bạn đều rất quan trọng. Rất vui khi bạn viết bằng tiếng Việt có dấu.